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最近，Nyberg-Rueppelにより離散対数問題に基づくメッセージ復元型署名とその変型が提
案された ([7, 8])．彼らは２つの攻撃の存在を指摘しているが，これらが全変型にどのように
適応されるかについては未検討であった．著者は [4] において，新たな攻撃を２つ指摘する
とともに，これら２つの攻撃及び彼らにより指摘されていた１つの攻撃がどのように全変型
に適応されるかについて述べた．本論文では，この署名の新たな攻撃をさらに２つ示すとと
もに，それがどのように全変型に適応されるか述べる．また彼らにより指摘されていた残り
の一つの攻撃の適応性についても述べる．
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Nyberg and Rueppel recently proposed a new ElGamal-type digital signature scheme with
message recovery feature and its six variants([7, 8]). They also pointed out two forgeries
against some of their signatures. But they did not investigate explicitly how to apply these
forgeries to all variants including elliptic curves. The author presented new two forgeries
and investigated deeply how to apply the two forgeries and already presented one forgery on
all variants([4]). In this paper, we present the further two forgeries and investigate explicitly
how to apply the two forgeries and the other presented forgery on all variants.
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1 Introduction

The RSA signature([9]), which is based on the difficulty of factoring, has a message recov-
ery feature. On the other hand, the ElGamal signature([2]) and its six variants([10, 1]),
which are based on the difficulty of the discrete logarithm problem, do not have a message
recovery feature. Here we call them EG-signatures. Recently Nyberg and Rueppel proposed
a method to add the message recovery feature to all EG-signatures([7, 8]). The Nyberg-
Rueppel’s signatures can achieve the authenticated key exchange in one pass transaction.
They also pointed out two forgeries against their signatures, which are called the signature-
equation attack using basepoint, and the recovery-equation attack using basepoint in this
paper. However they did not investigate explicitly how to apply these forgeries to all variants
including elliptic curves. In fact, they did not investigate how to apply the recovery-equation
attack using basepoint on an elliptic curve message recovery scheme.
Recently the author showed further two forgeries against Nyberg-Rueppel signatures ([4]).

Furthermore she investigated how to apply the two forgeries and the signature-equation
attack using basepoint to all Nyberg-Rueppel’s signatures.
In this paper, we show the further new two forgeries. We also investigate how to apply

the two forgeries to all Nyberg-Rueppel’s signatures including elliptic curves. Furthermore
we investigate how to apply the recovery-equation attack using basepoint on elliptic curve
variants.
The paper is organized as follows. Section2 summarizes EG-signatures and the message

recovery signature schemes. Section3 describes the above attacks for Nyberg-Rueppel’s sig-
natures. Section4 discusses how the attacks are applied for the message recovery signature
schemes on the elliptic curves.

2 Message recovery signature scheme

In this section, first we summarize ElGamal based signature scheme. Next we will describe
Nyberg-Rueppel’s idea by showing one of the message recovery signature schemes. Here we
call it NR(p)-signature.

2.1 ElGamal based signature scheme

The trusted authority chooses system parameters, that are a large prime p, a large integer
factor q of p − 1 and an element g ∈ ∗

p whose order is q. Those system parameters are
known to all users.
The signer Alice has a secret key xA and publishes its corresponding public key yA = gx .

The Alice’s signature (r1, s) of a message m ∈ ∗
p is computed as follows. First she chooses

a random number k ∈ q, and computes

r1 = gk (mod p) (1)



r01 = r1 (mod q)

ak ≡ b+ cxA (mod q), (2)

where (a, b, c) is a permutation of (±m,±r01,±s). Then she sends (r1, s) along with the
message m. The signature verification is done by checking the next equation,

ra
1 = gbyc

A (mod p). (3)

The original ElGamal signature ([2]) and DSA signature ([1]) are essentially based on the
case of (a, b, c) = (s, m, r01).

2.2 Message recovery signature scheme

Here we describe briefly one of the message recovery signature scheme, NR(p)-signature.
The Alice’s signature (r2, s) of a message m ∈ ∗

p is computed as follows. First she chooses
a random number k ∈ q, and computes

r1 = gk (mod p) (4)

r2 = r−1
1 m (mod p) (5)

r02 = r2 (mod q)

s ≡ k − xAr02 (mod q). (6)

Then she sends only (r2, s). The message can be recovered by computing m = gsy
r0

2
A r2

(mod p) with Alice’s public key yA. We call (5) the message-mask equation.
The message recovery signature scheme can be derived generally from EG-signatures

replacing m (resp. r01) by 1 (resp. r02) in Equation (2). Therefore the signature equation in
the message recovery signatures is generally of the form

ak ≡ b+ cxA (mod q), (7)

where (a, b, c) is a permutation of (±1,±r02,±s). The message is recovered by computing the
recovery equation

m = gb/ay
c/a
A r2 (mod p). (8)

We call this general signature schemes MR(p)-signatures. The description leads to the fol-
lowing six equations if we neglect the ± signs.

sk ≡ 1 + r02xA (mod q) (9)

r02k ≡ 1 + sxA (mod q) (10)

k ≡ s+ r02xA (mod q) (11)

sk ≡ r02 + xA (mod q) (12)

r02k ≡ s+ xA (mod q) (13)

k ≡ r02 + sxA (mod q) (14)

NR(p)-signature uses Equation (11) since only Equation (11) does not need inverses both in
the signature generation and verification.



3 Forgery against MR(p)-signature

First we describe new two forgery protocols against NR(p)-signature. Next we investigate
how to apply them on all MR(p)-signatures.

3.1 The redundancy attack

Assume that a forger gets Alice’s signature (r2, s) for a message m. Then the forger can
compute a signature (r̃2, s̃) for a message m̃ without the knowledge of Alice’s secret key by
the following way:

1. computes mr−1
2 = r1(= gk) (mod p).

2. chooses any number n ∈ p such that r̃2 = r02 + nq 6= r2. (There are about |p/q|
variants.)

3. sets a message m̃ = r̃2r1 (mod p) and s̃ = s.

4. sends (r̃2, s̃) as a signature of m̃.

We see that (r̃2, s̃) is a valid signature for m̃ since

gs̃yr̃2
A r̃2 = gsyr2

A r̃2 = gkr̃2 = m̃ (mod p).

The redundancy attack utilizes the next facts: 1. there is redundancy between the real
value r2 ∈ p determined in Equation (5) and the necessary value r02 for Equation (7); 2. the
redundancy enables a forger to construct a new message m̃ and the valid signature (r̃2, s̃)
by setting r̃2 ≡ r2 (mod q) (and r̃2 6= r2), s̃ = s and m̃ = r1r̃2 (using Equation (5)). Since
these are facts in all MR(p)-signatures, they all are vulnerable to the redundancy attack.
From the above discussion, the methods to avoid the redundancy attack are as follows: 1.

limit r2 to 0 < r2 < q in signature generation by setting p ≈ q (which may require repeated
trials of the random number k) and reject the signature in message recovery if r2 ≥ q.
2. change the message space p to q (that is q-message recovery signature) so that a
forger cannot construct a new m̃ in Equation (5). Then r2 has only to be determined in q.
So Equation (5) can be replaced

r2 = (r1 (mod q))−1m (mod q). (15)

The most effective application, the authenticated key exchange, requires p-message recovery
feature. Therefore only the former method is preferable. Generally we set |p| À |q| in order
to reduce the signature size. So the former method avoids the redundancy attack but actually
increases the signature size.
Next we apply the redundancy attack to EG-signatures. In this case, the attack tries to

do fact1 and 2 by changing r̃2 in each fact to r̃1 and the signature equation (7) in fact1 to
(2) with a given message and the signature (r1, s, m). For the fact1, the above discussion



also holds in EG-signatures. So a forger can take a new r̃1 which does not equal r1 in p but
equal r1 in q. On the other hand, the fact2 is invalid for EG-signatures since the relation
equation between m and a commitment r1, the message-mask equation (5), is not required
in EG-signatures. Therefore all EG-signatures are strong against the redundancy attack.

3.2 The recovery-equation attack using yA

The recovery-equation attack using yA is constructed as well by changing the function of
g in the attack presented in [8] to yA. This forgery can compute a signature (r2, s) on a
message of the form m = Mye

A for any chosen M ∈ p without ever seeing any signature
and Alice’s secret key. However all MR(p)-signatures are not necessarily vulnerable to the
recovery-equation attack. We deal with the signature equation (7) and investigate which
schemes are vulnerable.
The recovery equation for the above message m = Mye

A is

r2 = (Mye
A)g

−b/ay
−c/a
A , (16)

and we search its solution r2, s, and e. First we set

r2 = MgUyV
A , (17)

for any chosen U, V ∈ q. Next we investigate each signature scheme.
1. the schemes a = r02 (i.e. (10) and (13))
Then we can solve U = −b/a for b if and only if b = s. Therefore the scheme (10) is strong.
But in scheme (13), we can forge m by setting s = −Ur02 and e = V + 1/r02.
2. the schemes a = s (i.e. (9) and (12))
Then we can solve U = −b/a for c in each case. In fact, in scheme (9) we can forge m by
setting s = −1/U and e = V + r02/s. In scheme (12), we can forge m by setting s = −r02/U
and e = V + 1/s
3. the schemes a = 1 (i.e. (11) and (14))
Then we can solve U = −b/a for b if and only if b = s. Therefore the scheme (14) is strong.
But in scheme (11), we can forge m by setting s = −U and e = V + r02.
To sum up, the signature schemes (9), (11), (12), and (13) are vulnerable to the recovery-

equation attack using yA, but (10) and (14) are strong.

4 Message recovery signature on elliptic curve

The ElGamal based signature schemes can be constructed over an elliptic curve. So the
message recovery feature can be added to ElGamal based signature on an elliptic curve. We
will see how the previous attack is applied to the elliptic curve message recovery signature.
First we describe the message recovery signature using an elliptic curve. In this case the
system parameters are: an elliptic curve E/ p, a basepoint G ∈ E( p) and the order q of G.



The signer Alice has a secret key xA and publishes the corresponding public key YA = xAG.
The procedure for Alice to make a signature of m ∈ ∗

p is as follows. First she picks a
random number k ∈ p, and computes

R1 = kG = (r1x, r1y), (18)

r2 = r−1
1x m (mod p), (19)

r02 = r2 (mod q),

ak ≡ b+ cxA (mod q), (20)

where (a, b, c) is a permutation of (±1,±r02,±s) and Equation (18) is computed in E. Then
she outputs the signature (r2, s) to Bob.
The message can be recovered by computing

m = x(
b

a
G+

c

a
YA)r2 (mod p),

where b
a
G+ c

a
YA is computed in E and x( b

a
G+ c

a
YA) denotes the x-coordinate of b

a
G+ c

a
YA.

We call the above elliptic curve schemes MRE(p)-signatures. We investigate how to apply the
redundancy attack, the recovery-equation attack using basepoint and public key on MRE(p)-
signatures.

The redundancy attack
In MRE(p)-signature, the size |p| of an elliptic curve E/Fp chosen carefully can be reduced
to the size |q| of the order of the basepoint G ([5]). Therefore MRE(p)-signatures avoid this
attack easily by limiting r2 to 0 < r2 < q in signature generation and rejecting the signature
in message recovery if r2 ≥ q. Of course it may require repeated trials of the random number
k in signature generation. In order to avoid the repeated trials, we suggest to use an elliptic
curve over p with p-elements ([3]). The redundancy attack has no impact on E/ p with
p-elements at all since the order q of the basepoint G is equal to p.

The recovery-equation attack using basepoint and public key
The recovery-equation attack using basepoint or public key forges a type of message, a power
of basepoint or a power of public key. Since in MRE(p)-signatures these are not p-elements,
such message does not exist. Therefore both the recovery-equation attack using basepoint
and public key do not work for MRE(p)-signatures at all. If a forger forces to apply the
attack using basepoint, then he sets

r2 = Mx(eG)x(uG+ vYA)
−1, (21)

for u, v ∈ q and must solve b/a = u and c/a = v for s. Apparently it is impossible! The
same also holds in the attack using public key.

5 Conclusion

We have shown two forgeries, the redundancy attack and the recovery-equation attack us-
ing public key, for Nyberg-Rueppel’s signature. We have applied these attacks to MR(p)-



and MRE(p)-signatures generally. Especially for MRE(p)-signatures, we have applied the
recovery-equation attack using basepoint as well. The results are as follows:
1. all MR(p)-signatures are vulnerable to the redundancy attack.
2. the redundancy attack becomes invalid by setting the size of basepoint to be same as that
of the finite field.
3. EG-signatures are strong against the redundancy attack.
4. MRE(p)-signatures are strong against the redundancy attack.
5. the schemes (9), (11), (12), and (13) in MR(p)-signatures are vulnerable to the recovery-
equation attack using public key.
6. the schemes (10) and (14) are strong against the recovery-equation attack using public
key.
7. MRE(p)-signatures are strong against the recovery-equation attack using public key and
basepoint.

References

[1] “Proposed federal information processing standard for digital signature standard (DSS)
”, , v. 56, n. 169, 30 Aug 1991, 42980-42982.

[2] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms”, , Vol. IT-31 (1985), 469-472.

[3] A. Miyaji, “On ordinary elliptic curves”,
, Lecture Notes in Computer Science, 739(1993), Springer-Verlag, 460-469.

[4] A. Miyaji, “Weakness in message recovery signature schemes based on discrete logarithm
problems 1”, , ISEC95-11, 1994.

[5] A. Menezes, T. Okamoto and S. Vanstone, “Reducing elliptic curve logarithms to loga-
rithms in a finite field”,

, 80-89, 1991.

[6] “Specification for a digital signature standard”, National Institute for Standards and
Technology, Federal Information Standard Publication XX, draft (1991).

[7] K. Nyberg and R. A. Rueppel “A new signature scheme based on the DSA giving mes-
sage recovery”,

, 1993.

[8] K. Nyberg and R. A. Rueppel “Message recovery for signature schemes based on the dis-
crete logarithm problem”, , Lecture
Notes in Computer Science, 950(1995), Springer-Verlag, 182-193.



[9] R. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems”, , vol.21, No.2(1978), 120-126.

[10] C. P. Schnorr, “Efficient identification and signatures for smart cards”,
, Lecture Notes in Computer Science, 435(1989),

Springer-Verlag, 239-252.


